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Abstract
Explosions  within  the  earth  nonlinearly  deform  the  local  media,  but  at  typical 
seismological  observation  distances,  the  seismic  waves  can  be  considered  linear.  
Although nonlinear algorithms can simulate explosions in the very near field well, 
these codes are computationally expensive and inaccurate at propagating these signals 
to great distances.  A linearized wave propagation code, coupled to a nonlinear code, 
provides an efficient mechanism to both accurately simulate the explosion itself and 
to propagate these signals to distant receivers.  To this end we have coupled Sandia’s 
nonlinear simulation algorithm CTH to a linearized elastic wave propagation code for 
2-D axisymmetric media (axiElasti) by passing information from the nonlinear to the 
linear code via time-varying boundary conditions.  In this report, we first develop the 
2-D axisymmetric elastic wave equations in cylindrical coordinates.  Next we show 
how we design the time-varying boundary conditions passing information from CTH 
to axiElasti, and finally we demonstrate the coupling code via a simple study of the 
elastic radius.
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NOMENCLATURE

Abbreviation Definition

FD Finite-difference

TVBC Time-varying boundary conditions

PML Perfectly matched layer

CPML Convolutional perfectly matched layer

1-D One-dimensional

2-D Two-dimensional

3-D Three-dimensional
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1. INTRODUCTION
Explosions within the solid earth nonlinearly deform the local materials by possibly 
melting, crushing, breaking, and plastically deforming rocks.  These nonlinear 
processes, by definition, must be accounted for through nonlinear equations that 
describe nonlinear stress-strain relationships, phase changes, material strength models, 
etc., and are not amenable to linear elastic wave propagation algorithms.  Sandia has 
been developing such a nonlinear solver called CTH.

CTH is a large-deformation, strong-shock physics, massively-parallel code that can 
simulate shock through multiple materials in 1-D, 2-D (cartesian or cylindrical), or 3-
D (Schmitt et al., 2016).  It has been used to model shocks from meteorite impacts to 
explosions and is continuously being augmented and improved by Sandia.  Material 
compressive and tensile strength parameters are incorporated by several possible 
equation of state models.

Although nonlinear algorithms, such as CTH, are able to simulate explosions in the 
very near field well, they are computationally expensive, require knowledge about 
many properties of materials that are poorly understood, especially over broad spatial 
regions, and become inaccurate at propagating seismic signals to great distances.  
Beyond a certain distance from the source, called the elastic radius, particle motions 
are sufficiently small that nonlinear effects become negligible and linear elastic 
equations can be utilized to simulate wave propagation accurately.  Besides being 
much more computationally efficient than nonlinear algorithms, linear algorithms also 
require knowledge of fewer material parameters.  For example, for an isotropic, elastic 
media, only the  compressional (P) wave speed, shear (S) wave speed, and density of 
the material need to have reasonable approximations.  These properties can be gleaned 
from a variety of geophysical characterization techniques that do not need access to 
the material directly, but can be inferred via seismic inversion techniques.

Coupling these two types of algorithms so that the near-source, nonlinear portion of 
the simulation domain is computed via a nonlinear algorithm, such as CTH, and, 
beyond the elastic radius, a linear wave propagation algorithm is used, provides 
optimal accuracy for the computational expense.  As such, we have developed a 
technique based on time-varying boundary conditions where output motions from 
CTH are used to drive input conditions for the 2-D axisymmetric linear, elastic wave 
propagation code called axiElasti.

The first portion of this report will outline the derivation and implementation of the 2-
D axisymmetric, cylindrical coordinate linear elastic wave equations.  The second part 
will describe the numerical coupling between the two algorithms.  The final section 
will demonstrate results from coupled simulation runs to explore the elastic radius in 
simple models.
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2. AXIELASTI: 2-D AXISYMMETRIC LINEAR ELASTIC WAVE 
PROPAGATION

2.1. Elastic Wave Equations in Cylindrical Coordinates
The equations that govern 3-D linear wave propagation in an isotropic, elastic media 
can be expressed as a coupled system of first-order partial differential equations called 
the velocity-stress system:

�

�

�

�

� (2.1)

�

�

�

�

where � , � , and �  are particle velocities; � , � , � , � , � , and �  are stress 
components; �  is density; �  and �  are the lamé and shear moduli of the medium.  The 
velocities and stress are the dependent variables and are functions of space ( � ) and 
time (t); density and the elastic moduli are the independent variables and are 
considered here to be functions of space only.

The 9 equations that make up the system given by Equation 2.1 can be written more 
compactly in vector notation as:

∂vx(x, t)
∂t

=
1

ρ(x) ( ∂σxx(x, t)
∂x

+
∂σxy(x, t)

∂y
+

∂σxz(x, t)
∂z )

∂vy(x, t)
∂t

=
1

ρ(x) (
∂σxy(x, t)

∂x
+

∂σyy(x, t)
∂y

+
∂σyz(x, t)

∂z )
∂vz(x, t)

∂t
=

1
ρ(x) (

∂σxz(x, t)
∂x

+
∂σyz(x, t)

∂y
+

∂σzz(x, t)
∂z )

∂σxx(x, t)
∂t

= λ(x)( ∂vx(x, t)
∂x

+
∂vy(x, t)

∂y
+

∂vz(x, t)
∂z ) + 2μ(x)

∂vx(x, t)
∂x

∂σyy(x, t)
∂t

= λ(x)( ∂vx(x, t)
∂x

+
∂vy(x, t)

∂y
+

∂vz(x, t)
∂z ) + 2μ(x)

∂vy(x, t)
∂y

∂σzz(x, t)
∂t

= λ(x)( ∂vx(x, t)
∂x

+
∂vy(x, t)

∂y
+

∂vz(x, t)
∂z ) + 2μ(x)

∂vz(x, t)
∂z

∂σxy(x, t)
∂t

= μ(x)( ∂vx(x, t)
∂y

+
∂vy(x, t)

∂x )
∂σxz(x, t)

∂t
= μ(x)( ∂vx(x, t)

∂z
+

∂vz(x, t)
∂x )

∂σyz(x, t)
∂t

= μ(x)(
∂vy(x, t)

∂z
+

∂vz(x, t)
∂y )

vx vy vz σxx σyy σzz σxz σyz σxy
ρ λ μ

x
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� (2.2)

where �  is the velocity vector; �  is the 3 by 3 symmetric stress tensor; and �  is the 
fourth-rank elastic tensor (Dahlen and Tromp, 1998).  For isotropic solids, the elastic 
tensor is defined by

� (2.3)

where �  and �  are defined as before.

With Equation 2.2, we can convert the system given in cartesian coordinates in 
Equation 2.1 to cylindrical coordinates by using the following well-known relations 
(e.g., Marsden and Tromba, 1988):

�

� (2.4)

Substituting the equations from Equation 2.4 into Equation 2.2, we retrieve the linear 
elastic system in cylindrical coordinates:

�

�

�

�

� (2.5)

�

�

�

∂v(x, t)
∂t

=
1

ρ(x)
∇ ⋅ Σ(x, t)

∂Σ(x, t)
∂t

= C : ∇v(x, t)

v Σ C

Cijkl = λδijδkl + μ(δikδjl + δilδjk)

λ μ

∇f =
∂f
∂r

̂r +
1
r

∂f
∂θ

̂θ +
∂f
∂z

̂z

∇ ⋅ F =
1
r ( ∂(rFr)

∂r
+

∂Fθ

∂θ
+

∂(rFz)
∂z )

∂vr

∂t
=

1
ρ ( ∂σrr

∂r
+

1
r

∂σrθ

∂θ
+

∂σrz

∂z
+

σrr − σθθ

r )
∂vθ

∂t
=

1
ρ ( ∂σrθ

∂r
+

1
r

∂σθθ

∂θ
+

∂σθz

∂z
+

2σrθ

r )
∂vz

∂t
=

1
ρ ( ∂σrz

∂r
+

1
r

∂σθz

∂θ
+

∂σzz

∂z
+

σrz

r )
∂σrr

∂t
= λ ( ∂vr

∂r
+

vr

r
+

1
r

∂vθ

∂θ
+

∂vz

∂z ) + 2μ
∂vr

∂r
∂σθθ

∂t
= λ ( ∂vr

∂r
+

vr

r
+

1
r

∂vθ

∂θ
+

∂vz

∂z ) + 2μ ( vr

r
+

1
r

∂vθ

∂θ )
∂σzz

∂t
= λ ( ∂vr

∂r
+

vr

r
+

1
r

∂vθ

∂θ
+

∂vz

∂z ) + 2μ
∂vz

∂z
∂σrθ

∂t
= μ ( ∂vθ

∂r
−

vθ

r
+

1
r

∂vr

∂θ )
∂σθz

∂t
= μ ( 1

r
∂vz

∂θ
+

∂vθ

∂z )
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�

where � , � , and �  are velocity components; � , � , � , � , � , and �  are the 
stress components in cylindrical coordinates.

Simplifying to 2-D axisymmetry is equivalent to setting � .  Making this 

substitution, one obtains the 2-D axisymmetric system of linear elastic equations:

�

�

�

�

� (2.6)

�

�

�

�

For this version of axiElasti, we are going to further assume that azimuthal motion is 
zero, i.e., � .  Making this substitution, one obtains:

�

�

�

∂σrz

∂t
= μ ( ∂vr

∂z
+

∂vz

∂r )
vr vθ vz σrr σθθ σzz σrz σrθ σθz

∂
∂θ

= 0

∂vr

∂t
=

1
ρ ( ∂σrr

∂r
+

∂σrz

∂z
+

σrr − σθθ

r )
∂vθ

∂t
=

1
ρ ( ∂σrθ

∂r
+

∂σθz

∂z
+

2σrθ

r )
∂vz

∂t
=

1
ρ ( ∂σrz

∂r
+

∂σzz

∂z
+

σrz

r )
∂σrr

∂t
= λ ( ∂vr

∂r
+

vr

r
+

∂vz

∂z ) + 2μ
∂vr

∂r
∂σθθ

∂t
= λ ( ∂vr

∂r
+

vr

r
+

∂vz

∂z ) + 2μ
vr

r
∂σzz

∂t
= λ ( ∂vr

∂r
+

vr

r
+

∂vz

∂z ) + 2μ
∂vz

∂z
∂σrθ

∂t
= μ ( ∂vθ

∂r
−

vθ

r )
∂σθz

∂t
= μ

∂vθ

∂z
∂σrz

∂t
= μ ( ∂vr

∂z
+

∂vz

∂r )
vθ = 0

∂vr

∂t
=

1
ρ ( ∂σrr

∂r
+

∂σrz

∂z
+

σrr − σθθ

r )
∂vθ

∂t
= 0

∂vz

∂t
=

1
ρ ( ∂σrz

∂r
+

∂σzz

∂z
+

σrz

r )
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� (2.7)

�

�

�

�

The assumptions made to derive Equations 2.6 and 2.7 eliminate 3 equations 
completely and simplify the remaining equations.  Equation 2.7 constitutes the system 
of equations that form the basis for axiElasti’s computations.

2.1.1. Near the Symmetry Axis
An investigation of Equations 2.7, reveals that there are several terms that behave as 
� .  Near the symmetry axis, i.e., � , these terms become singularities.  In the 
section on implementation, we will describe the methods taken to avoid these 
singularities.

2.1.2. Sources

2.1.2.1. Body Force Sources
Body force sources (force per unit volume) are the inhomogeneous terms to the 
velocity equations.  The appropriate component of the vector force source ( �  or � )is 
applied to the corresponding velocity update terms, i.e.,

�

� (2.8)

2.1.2.2. Moment Sources

Moment sources in cylindrical coordinates simply involve a tensor coordinate 
transformation from 3-D cartesian to cylindrical coordinates of the symmetric seismic 
moment tensor.  Performing this tensor rotation, one obtains the following 
relationships between the cylindrical coordinate moment tensor terms and those in 
cartesian coordinates:

∂σrr

∂t
= λ ( ∂vr

∂r
+

vr

r
+

∂vz

∂z ) + 2μ
∂vr

∂r
∂σθθ

∂t
= λ ( ∂vr

∂r
+

vr

r
+

∂vz

∂z ) + 2μ
vr

r
∂σzz

∂t
= λ ( ∂vr

∂r
+

vr

r
+

∂vz

∂z ) + 2μ
∂vz

∂z
∂σrθ

∂t
= 0

∂σθz

∂t
= 0

∂σrz

∂t
= μ ( ∂vr

∂z
+

∂vz

∂r )

1/r r = 0

Fr Fz

∂vr

∂t
=

1
ρ ( ∂σrr

∂r
+

∂σrz

∂z
+

σrr − σθθ

r
+ Fr)

∂vz

∂t
=

1
ρ ( ∂σrz

∂r
+

∂σzz

∂z
+

σrz

r
+ Fz)
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�

�

�

�

� (2.9)

where � , � , � , � , � , and �  comprise the moment tensor components in 
cartesian coordinates; � , � , � , � , � , and �  are the corresponding 
cylindrical coordinate components; and �  is the azimuthal angle relative to the x-axis.

For axisymmetric problems the moment tensor must be independent of azimuthal 
angle.  This imposes some restrictions on what the cartesian components can be:

�

�

�

� (2.10)

With these restrictions, Equations 2.9 become

�

�

�

�

�

� (2.11)

which indicates that there are only 3 independent components in the axisymmetric 
cylindrical system.

The time derivative of the moment tensor terms are added to its corresponding stress 
component

�

� (2.12)

Mrr = Mxx cos2 θ + 2Mxy sin θ cos θ + Myy sin2 θ

Mθθ = Mxx sin2 θ − 2Mxy sin θ cos θ + Myy cos2 θ

Mzz = Mzz

Mrz = Mxz cos θ + Myz sin θ

Mrθ = − Mxx sin θ cos θ + Mxy (−sin2 θ + cos2 θ) + Myy sin θ cos θ

Mθz = − Mxz sin θ + Myz cos θ

Mxx Myy Mzz Mxy Mxz Myz
Mrr Mθθ Mzz Mrz Mθz Mrθ

θ

Mxx = Myy

Mxy = 0

Mxz = Mrz cos θ

Myz = Mrz sin θ

Mrr = Mxx

Mθθ = Mxx

Mzz = Mzz

Mrz = Mrz

Mrθ = 0

Mθz = 0

∂σrr

∂t
= λ ( ∂vr

∂r
+

vr

r
+

∂vz

∂z ) + 2μ
∂vr

∂r
+

∂Mrr

∂t
∂σθθ

∂t
= λ ( ∂vr

∂r
+

vr

r
+

∂vz

∂z ) + 2μ
vr

r
+

∂Mθθ

∂t
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An isotropic moment tensor represents an explosion (or implosion) source.  In this 
case, �  and � .

2.2. Finite-Difference Implementation

2.2.1. Finite-Difference Scheme
In order to discretize the equations in Equation 2.7, we utilize a standard staggered 
grid.  In this scheme the compressive stresses, � , � , and � , reside on the corners 
of cells, the shear stress, � , in the center of a cell, the radial velocity, � , at the center 
of the radial edges of the cell, and the vertical velocity, � , at the center of the vertical 
edges of the cell (Figure 1).  The medium parameters, � , � , and � , are coincident with 
the compressive stresses.  The time discretization is also staggered, with all stresses 
updating on integer time steps and velocities updating at half-integer time steps.  
Staggering of the space and time variables allows compact, centered finite-difference 
(FD) operators to be used.  The equations are discretized with fourth order accurate 
spatial operators and second order temporal accuracy using standard Taylor series 
coefficients.

2.2.2. Finite-Difference Equations
The following equations give the finite-difference formulae corresponding to 
Equations 2.7.  In these equations, � , � , and � , are the radial, vertical, and temporal 

∂σzz

∂t
= λ ( ∂vr

∂r
+

vr

r
+

∂vz

∂z ) + 2μ
∂vz

∂z
+

∂Mzz

∂t
∂σrz

∂t
= μ ( ∂vr

∂z
+

∂vz

∂r ) +
∂Mrz

∂t

Mrr = Mθθ = Mzz Mrz = 0

σrr σθθ σzz
σrz vr

vz
ρ λ μ

i k l
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Figure 1:  Unit cell (top) and time axis (bottom) for the 
staggered finite-difference scheme.



index numbers, respectively; �  is the time step.  The finite-difference coefficients are 
defined as

�

�

� (2.13)

�

�

�

where �  and �  are the radial and horizontal grid spacing, respectively.

Note that since density is provided on the compressional nodes, it must be interpolated 
onto the radial and vertical velocity node points using second order interpolation.  The 
compressive stress updating equations do not require any interpolation of medium 
parameters.  However, the shear stress updating equations require interpolation of the 
shear modulus.  This is accomplished via harmonic averaging of the surrounding four 
shear moduli given on the corners to the central shear stress node location (Moczo et 
al., 2002):

� (2.14)

dt

c0
r =

9
8

1
hr

c1
r = −

1
24

1
hr

c0
z =

9
8

1
hz

c1
z = −

1
24

1
hz

d0
r =

9
16

d1
r = −

1
16

hr hz

μi+1/2,k+1/2 =
4

1
μi,k

+ 1
μi+1,k

+ 1
μi,k+1

+ 1
μi+1,k+1
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2.2.2.1. Radial Velocity

� (2.15)

2.2.2.2. Vertical Velocity

� (2.16)

vr(ri+1/2, zk, tl+1/2) = vr (ri+1/2, zk, tl−1/2)
+

dt
1
2 (ρi,k + ρi+1,k) [c(0)

r [σrr (ri+1, zk, tl) − σrr (ri, zk, tl)]
+c(1)

r [σrr (ri+2, zk, tl) − σrr (ri−1, zk, tl)]
+c(0)

z [σrz (ri+1/2, zk+1/2, tl) − σrz (ri+1/2, zk−1/2, tl)]
+c(1)

z [σrz (ri+1/2, zk+3/2, tl) − σrz (ri+1/2, zk−3/2, tl)]
+ 1

ri+1/2 [d (0)
r [σrr (ri, zk, tl) + σrr (ri+1, zk, tl)]

+d (1)
r [σrr (ri−1, zk, tl) + σrr (ri+2, zk, tl)]

−d (0)
r [σθθ (ri, zk, tl) + σθθ (ri+1, zk, tl)]

−d (1)
r [σθθ (ri−1, zk, tl) + σθθ (ri+2, zk, tl)]]]

vz(ri, zk+1/2, tl+1/2) = vz (ri, zk+1/2, tl−1/2)
+

dt
1
2 (ρi,k + ρi,k+1) [c(0)

r [σrz (ri+1/2, zk+1/2, tl) − σrz (ri−1/2, zk+1/2, tl)]
+c(1)

r [σrz (ri+3/2, zk+1/2, tl) − σrz (ri−3/2, zk+1/2, tl)]
+c(0)

z [σzz (ri, zk+1, tl) − σzz (ri, zk, tl)]
+c(1)

z [σzz (ri, zk+2, tl) − σzz (ri, zk−1, tl)]
+ 1

ri [d (0)
r [σrz (ri+1/2, zk+1/2, tl) + σrz (ri−1/2, zk+1/2, tl)]

+d (1)
r [σrz (ri+3/2, zk+1/2, tl) + σrz (ri−3/2, zk+1/2, tl)]]]
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2.2.2.3. Radial Compressive Stress

� (2.17)

σrr(ri, zk, tl+1) = σrr (ri, zk, tl)
+λi,kdt [c(0)

r [vr (ri+1/2, zk, tl+1/2) − vr (ri−1/2, zk, tl+1/2)]
+c(1)

r [vr (ri+3/2, zk, tl+1/2) − vr (ri−3/2, zk, tl+1/2)]
+c(0)

z [vz (ri, zk+1/2, tl+1/2) − vz (ri, zk−1/2, tl+1/2)]
+c(1)

z [vz (ri, zk+3/2, tl+1/2) − vz (ri, zk−3/2, tl+1/2)]
+ 1

ri [d (0)
r [vr (ri+1/2, zk, tl+1/2) + vr (ri−1/2, zk, tl+1/2)]

+d (1)
r [vr (ri+3/2, zk, tl+1/2) + vr (ri−3/2, zk, tl+1/2)]]]

+2μi,kdt [c(0)
r [vr (ri+1/2, zk, tl+1/2) − vr (ri−1/2, zk, tl+1/2)]

+c(1)
r [vr (ri+3/2, zk, tl+1/2) − vr (ri−3/2, zk, tl+1/2)]]
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2.2.2.4. Azimuthal Compressive Stress

� (2.18)

σθθ(ri, zk, tl+1) = σθθ (ri, zk, tl)
+λi,kdt [c(0)

r [vr (ri+1/2, zk, tl+1/2) − vr (ri−1/2, zk, tl+1/2)]
+c(1)

r [vr (ri+3/2, zk, tl+1/2) − vr (ri−3/2, zk, tl+1/2)]
+c(0)

z [vz (ri, zk+1/2, tl+1/2) − vz (ri, zk−1/2, tl+1/2)]
+c(1)

z [vz (ri, zk+3/2, tl+1/2) − vz (ri, zk−3/2, tl+1/2)]
+ 1

ri [d (0)
r [vr (ri+1/2, zk, tl+1/2) + vr (ri−1/2, zk, tl+1/2)]

+d (1)
r [vr (ri+3/2, zk, tl+1/2) + vr (ri−3/2, zk, tl+1/2)]]]

+2μi,kdt [ 1
ri [d (0)

r [vr (ri+1/2, zk, tl+1/2) + vr (ri−1/2, zk, tl+1/2)]

+d (1)
r [vr (ri+3/2, zk, tl+1/2) + vr (ri−3/2, zk, tl+1/2)]]]
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2.2.2.5. Vertical Compressive Stress

� (2.19)

2.2.2.6. Radial-Vertical Shear Stress

� (2.20)

2.2.3. Near the Symmetry Axis
As mentioned in Section 2.1.1, the axisymmetric equations exhibit singularities at the 
symmetry axis itself.  Additionally, the finite-difference equations (Equations 
2.15-2.20) require “reaching” over the symmetry axis when close to the symmetry 
axis.  The 1/r term in the radial velocity equation (2.15) is a non-issue since radial 
velocity is never computed directly at r=0; i.e., it is staggered one-half grid node off 
the axis.  However, the vertical velocity component and all the compressive stress 
components have 1/r terms and are calculated directly at r=0.  Based on symmetry 

σzz(ri, zk, tl+1) = σzz (ri, zk, tl)
+λi,kdt [c(0)

r [vr (ri+1/2, zk, tl+1/2) − vr (ri−1/2, zk, tl+1/2)]
+c(1)

r [vr (ri+3/2, zk, tl+1/2) − vr (ri−3/2, zk, tl+1/2)]
+c(0)

z [vz (ri, zk+1/2, tl+1/2) − vz (ri, zk−1/2, tl+1/2)]
+c(1)

z [vz (ri, zk+3/2, tl+1/2) − vz (ri, zk−3/2, tl+1/2)]
+ 1

ri [d (0)
r [vr (ri+1/2, zk, tl+1/2) + vr (ri−1/2, zk, tl+1/2)]

+d (1)
r [vr (ri+3/2, zk, tl+1/2) + vr (ri−3/2, zk, tl+1/2)]]]

+2μi,kdt [c(0)
z [vz (ri, zk+1/2, tl+1/2) − vz (ri, zk−1/2, tl+1/2)]

+c(1)
z [vz (ri, zk+3/2, tl+1/2) − vz (ri, zk−3/2, tl+1/2)]]

σrz(ri+1/2, zk+1/2, tl+1) = σrz (ri+1/2, zk+1/2, tl)
+μi+1/2,k+1/2dt [c(0)

z [vr (ri+1/2, zk+1, tl+1/2) − vr (ri+1/2, zk, tl+1/2)]
+c(1)

z [vr (ri+1/2, zk+2, tl+1/2) − vr (ri+1/2, zk−1, tl+1/2)]
+c(0)

r [vz (ri+1, zk+1/2, tl+1/2) − vz (ri, zk+1/2, tl+1/2)]
+c(1)

r [vz (ri+2, zk+1/2, tl+1/2) − vz (ri−1, zk+1/2, tl+1/2)]]
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arguments and the fact that the terms involving 1/r in these equations are stand-ins for 
the 3-D cartesian y-coordinate (assuming the x-axis would be aligned with the r-axis), 
at r=0,

�

� (2.21)

Thus, we can simply replace these 1/r terms in Equations 2.16-2.19 with those of 
Equation 2.21 at r=0.

The second issue involves the need to “reach” over the symmetry axis with fourth 
order finite-difference operators when close to the r=0 axis.  Here, symmetry 
considerations allow us to fill in these missing values with ones that do exist within 
the grid.

�

�

� (2.22)

�

Note that neither �  nor �  is needed across the symmetry axis.

By taking Equations 2.21 and 2.22 into account, Equations 2.15-2.20 can be used 
everywhere in the 2-D model domain.  However, special, non-centered finite-
difference operators could be employed near the symmetry axis to avoid “reaching” 
over the axis or inaccuracies due to the rapidly growing function near this axis.  
Several non-centered finite-difference and interpolator operators were tested when 
developing this algorithm.  None of these proved as accurate overall as the centered 
operators given here.  The primary issue that was found with the centered operators is 
that the computed traces were a factor of �  smaller in amplitude for all components 
relative to an isotropic explosion in a well-tested 3-D elastic algorithm.  Tests showed 
that this �  factor was due to interpolator error in �  directly next to the source.  
When this factor is accounted for, amplitude differences between the 3-D and 2-D 
axisymmetric codes are <0.1%, waveform similarity is excellent, and, for isotropic 
explosions, pressure, � , and � , exhibit the symmetry they should along the r- and z-
directions (Figures 2 and 3).

2.2.4. Sources
Currently, all sources are required to lie on the symmetry axis.  One can choose any z-
coordinate for the source.  The source amplitude is linearly extrapolated to the closest 
two surrounding nodes if the source does not lie directly on a node.

lim
r→0

vr

r
=

∂vr

∂r

lim
r→0

σrz

r
=

∂σrz

∂r

vr(−r) = − vr(r)

vz(−r) = vz(r)

σrr(−r) = σrr(r)

σrz(−r) = − σrz(r)

σθθ σzz

2

2 vr

vr vz
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One can also provide any arbitrary source time function for the source or specify a 
delta function source.  In the latter case, the output traces are Greens Functions and 
can be convolved with any source time function to obtain results just as if that source 
time function had been used originally.  This provides a computationally efficient 
mechanism to try a variety of source time functions with a single run of the algorithm.  
Besides being able to provide any arbitrary source time function via an input text file, 
there are some ready-made source time functions, such as a Gaussian, that axiElasti 
can generate for the user.

2.2.5. Receivers
Receivers can be placed anywhere in the domain, but they are ill advised in the 
absorbing boundary zone, at the source point, or directly on the symmetry axis.  These 
restrictions are due to numerical issues that will cause the traces to be erroneous or 
hard to interpret.  For receivers not directly located on a node, the values are bilinearly 
interpolated from the surrounding four nodes.

�23

Figure 2:  Comparison of pressure traces from 3-D (black) and 2-D axisymmetric 
algorithms using a homogeneous earth model and isotropic explosion source.  
For the 2-D algorithm, traces along the radial direction (red dashed) match those 
along the vertical direction (blue dotted).



Velocity and stress component receivers are directly interpolated from their respective 
dependent variable.  Pressure, however, is not available at every grid point and, thus, it 
must be computed from the compressive stress nodes via

�

2.2.6. Absorbing Boundary Conditions
Due to the finite size of a computational domain, absorbing boundary conditions are 
required to mitigate unrealistic, numerical reflections from the domain boundaries.  
The z boundaries (top and bottom) can utilize standard convolutional perfectly 
matched layers (CPML; Komatitsch and Martin, 2007) as are used in 3-D algorithms 
simply changed to 2-D.  The maximum radial boundary, however, requires specialized 
treatment in an axisymmetric cylindrical coordinate case (Collino and Monk, 1998).

Within the maximum radial PML zone, the following differential equations apply

p = −
1
3 (σrr + σθθ + σzz)

�24

Figure 3:  Comparison of velocity traces from 3-D vx along the x direction (black) 
and 2-D axisymmetric algorithms using a homogeneous earth model and 
isotropic explosion source.  For the 2-D algorithm, vr is displayed in the radial 
direction and vz along the vertical direction.



�

�

�

� (2.23)

�

�

�

�

�

�

�

�

�

�

�

�

�

ρ ( ∂v*r
∂t

+ γ v*r ) = ( ∂σ*rr

∂r
+

∂σ*rz

∂z
+

σ̃rr − σ̃θθ

r )
ρ ( ∂v*z

∂t
+ γ v*z ) = ( ∂σ̃rz

∂r
+

∂σ*zz

∂z
+

σ̄rz

r )
∂σ*rr

∂t
+ γσ*rr = λ ( ∂v*r

∂r
+

ṽr

r
+

∂ṽz

∂z ) + 2μ
∂v*r
∂r

∂σ*θθ

∂t
+ γσ*θθ = λ ( ∂v*r

∂r
+

ṽr

r
+

∂ṽz

∂z ) + 2μ
ṽr

r
∂σ̃zz

∂t
+ γσ̃zz = λ ( ∂v*r

∂r
+

ṽr

r
+

∂ṽz

∂z ) + 2μ
∂ṽz

∂z
∂σrz

∂t
+ γσrz = μ ( ∂ṽr

∂z
+

∂vz

∂r )
∂v*r
∂t

=
∂vr

∂t
+ γ̄ vr

∂σ*rr

∂t
=

∂σrr

∂t
+ γ̄σrr

∂σ̃rz

∂t
=

∂σrz

∂t
+ γ̄σrz

∂σ*rz

∂t
=

∂σ̃rz

∂t
+ γσ̃rz

∂σ̃rr

∂t
=

∂σrr

∂t
+ γσrr

∂σ̃θθ

∂t
=

∂σθθ

∂t
+ γσθθ

∂v*z
∂t

=
∂vz

∂t
+ γ̄ vz

∂σ̃zz

∂t
=

∂σzz

∂t
+ γ̄σzz

∂σ*zz

∂t
=

∂σ̃zz

∂t
+ γσ̃zz

∂σ̄rz

∂t
=

∂σrz

∂t
+ γσrz

∂ṽr

∂t
=

∂vr

∂t
+ γ vr
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�

�

This introduces 13 new variables and, correspondingly, 13 new equations.  �  is the 
PML damping parameter.  It is a function of r only and, in axiElasti, has a quadratic 
profile starting at zero at the interface between the PML and interior zone and ramps 
up to a maximum value at the flank.  Finally,

� (2.24)

where �  is the radial flank of the domain and �  is the radius at the start of the 
radial PML zone.  Note that these equations reduce to those given in Equation 2.7 if �  
is zero.

In the corners where a z and r PML zone overlap, the two can be used concurrently 
without any modifications.

2.2.7. Choice of Cell Size
The cell size, or node spacing, � , is typically the same in the vertical and radial 
directions, (i.e., � ) for maximum accuracy.  It determines the fidelity of the 
solution of the FD equations.  The appropriate node spacing to use is based upon the 
minimum wave speed in the domain ( � )and the maximum frequency ( � )that one 
desires to be simulated,

�

where �  is a constant that is based upon the desired accuracy.  Based on numerical 
phase and group speed curves for elastic media in Haney and Aldridge (2008), the 
optimal �  is between 0.1 and 0.16.  The best value depends on the time step and the 
model to a certain extent.  For typical models with topography, surface waves, and 
other complications, experience shows that a value for �  closer to 0.1 is optimal, 
whereas larger values can be used in simpler models.

2.2.8. Stability

2.2.8.1. Time step

Since this is an explicit leap-frog time-stepping algorithm, there exists a maximum 
time step for stability ( � ), called the Courant-Friedrichs-Lewy (CFL) condition.  
It is determined by the grid spacing and maximum seismic velocity ( � )via

� (2.25)

∂ṽz

∂t
=

∂v*z
∂t

+ γ v*z

∂σ*θθ

∂t
=

∂σθθ

∂t
+ γ̄σθθ

γ

γ̄ (r) = ∫
rmax

rABC

γ (s)ds

rmax rABC
γ

h
h = hr = hz

Vmin fmax

h = G
Vmin

fmax

G

G

G

max dt
Vmax

max dt =
h

2Vmax ∑ c(i)
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where �  is �  and the �  are the finite-difference coefficients given Section 
2.2.2.

Although this is the maximum time step allowed for stability, it is not the optimal 
choice since smaller �  will provide superior accuracy.  Based on von Neumann 
analysis of the numerical wave speeds (Haney and Aldridge, 2008) versus 
computational runtime as a function of � , the optimal �  is approximately � .

2.2.8.2. High Contrast Media

Strong contrasts, especially in density, from one grid point to the next can cause 
instabilities and/or inaccuracies in simulation results.  Using the medium parameter 
averaging techniques discussed in Section 2.2.2 greatly improves performance, but 
still will produce inaccurate results in high contrast media.  One solution that produces 
accurate and stable results uses the order-switching methodology outlined in Preston et 
al. (2008).  In this method, the earth model is scanned prior to time-stepping and high 
contrast points are diagnosed.  Finite-difference updating formulae only in the vicinity 
of these points are altered from fourth to second order accuracy; all other points 
remain at fourth order accuracy.  By limiting the reach of the operators to second 
order, stability and accuracy can be maintained, while keeping the majority of the 
dependent variable updates at fourth order accuracy.

h max(hr, hz) c(i)

dt

dt dt 0.6 max dt
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3. NONLINEAR TO LINEAR CODE COUPLING
One of the primary objectives of this work is to allow the coupling between a 
nonlinear algorithm, such as CTH, to a linear wave propagation algorithm, such as 
axiElasti, to permit computationally efficient and accurate signal generation in the 
near-field, nonlinear zone and propagation of seismic waves into the far-field, linear 
region.  To accomplish this, we implement time-varying boundary conditions (TVBC) 
into axiElasti.  This section details the implementation and procedures needed to 
perform a one-way transfer of information from a nonlinear code to a linear one.  We 
will focus our attention on CTH and axiElasti, but many of the higher level principles 
would apply to any nonlinear to linear code coupling.

3.1. Time-Varying Boundary Condition Implementation
The basic principle behind time-varying boundary conditions is fairly straight forward.  
One simply supplies values for all dependent variables for all times at specified 
locations within the model domain.  Equations 2.7 are not used at these locations, but 
the values come exclusively from an external source, namely output from CTH.  Of 
course, the details of the implementation are what require special consideration.

In a finite-difference algorithm such as axiElasti, the spatial order of the FD operators 
must be honored in the boundary zone.  Additionally, spatial and temporal staggering 
of the dependent variables must be accounted for.  This requires that the zone have 
appropriate thickness in space, with possible interpolation of CTH output values in 
time and/or space.  Since axiElasti is a fourth order, standard staggered grid FD 
algorithm, we need one and a half cells worth of information from the CTH domain in 
order to update dependent variables in the axiElasti domain (Figure 4).  More 
specifically, to update compressive stresses and vertical velocities at point D in the 
axiElasti domain, from Equations 2.16-2.19, one needs radial velocities and rz shear 
stresses from points A and C in the CTH domain, respectively.  Likewise, to update 
radial velocities and rz shear stress at point E in the axiElasti domain, one needs 
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Figure 4:  Required spatial distribution of velocities and stresses 
needed by axiElasti from the CTH domain for time varying 
boundary conditions.

A B C D E

CTH AxiElasti



compressive stresses and vertical velocities from points B and D, respectively.  Since 
point D is already in the axiElasti domain, only point B is needed from the CTH 
domain.  Thus, CTH information from points A, B, and C are required to properly 
perform the finite-difference computations in axiElasti.

3.2. CTH Tracers
CTH allows users to place receivers that record any of a variety of parameters or 
values at specified fixed locations within its domain as a function of time, called 
tracers.  Tracers provide the information required to fill in the time-varying boundary 
conditions for axiElasti.  As such, we need horizontal and vertical components of 
particle velocity, all three compressive stresses, and the rz stress components at the 
points outlined in Section 3.1.  All of the needed information is available as CTH 
tracers in 2-D cylindrical mode except for � .  However, this can be calculated from 
� , � , and �  via:

� (3.1)

by rearrangement and integration of the compressive stress equations in Equation 2.7, 
assuming homogenous initial conditions.

Although CTH tracers can easily be chosen to lie on the FD grid with planning, the 
tracers must be temporally interpolated because CTH and axiElasti handle time 
differently.  CTH runs with a variable time step to maximize accuracy and efficiency.  
However, axiElasti uses a fixed time step throughout.  Thus, output tracers from CTH 
must be resampled onto the regular axiElasti time raster.  Additionally, due to the 
nature of CTH computations, higher frequencies will be present in the CTH tracers 
than can be handled accurately in the FD algorithm.  As such, CTH tracers are low 
pass filtered to the corner frequency permitted by the FD grid for accurate 
propagation.

One final processing step is required before the CTH tracer output data can be used as 
time-varying boundary conditions within axiElast.  The units of CTH are cgs, whereas 
those of axiElasti are SI units.  Velocities are converted from cm/s to m/s and stresses 
from dynes/cm2 to Pa.  It also must be remembered that location information given in 
CTH tracer files are also in cgs units, so r and z coordinates must be converted from 
cm to m.

3.3. Boundary Shape and Placement
The shape of the boundary can theoretically take any form as long as the principles in 
Section 3.1 are adhered to: axiElasti requires one and a half cell width’s worth of 
information reaching into the boundary zone whether that be in radial or vertical 
direction, or both.  In the current version of axiElasti only a 2-D rectangle in r and z 
with one edge at r=0 (a cylinder in 3-D) is implemented.  CTH computes the ground 
response inside of this rectangle, while axiElasti will propagate waves outgoing from 
this rectangle.  The location of the radius and minimum and maximum vertical 

σθθ
σrr σzz vr /r

σθθ(t) =
λ

2λ + 2μ [σrr(t) + σzz(t)] + [λ + 2μ −
λ2

λ + μ ]∫
t

0

vr(τ)
r

dτ
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coordinates for this rectangle are dependent on the elastic radius, where ground 
motions become sufficiently linear to allow accurate propagation given axiElasti’s 
linear assumptions.  The location of the elastic radius as a function of material type 
and the repercussions of using an incorrect elastic radius will be discussed in the 
following chapter.

3.4. Verification of the axiElasti Implementation
In order to test the implementation of time-varying boundary conditions in axiElasti, 
we first ran axiElasti with an explosion source in a homogenous medium and captured 
velocity and stress component traces from receivers placed along a 2-D rectangle 
surrounding the source.  These axiElasti output traces can then be used directly as 
time-varying boundary conditions within a separate run of axiElasti without a source, 
but that uses solely time-varying boundary conditions.  Waveforms from receivers 
outside of the time-varying boundary zone can then be compared between the standard 
axiElasti run with the source and the one using only time-varying boundary 
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Figure 5:  Comparison of pressure traces from standard axiElasti simulation 
(with explosive source) to axiElasti using time-varying boundary conditions 
(TVBC).  The boundary surrounds the source and velocities and stresses were 
captured from the standard run and then used as input for the TVBC run.



conditions.  Figure 5 demonstrates that the results of the two simulations are identical 
to machine precision, indicating that the time-varying boundary condition code within 
axiElasti is operating correctly.  In the next chapter we will demonstrate the 
effectiveness of the time-varying boundary conditions when using CTH tracer output.

�32



4. INVESTIGATION OF THE ELASTIC RADIUS

4.1. Modeling Setup
In this chapter we will show results from CTH to axiElasti code coupling numerical 
experiments related to the elastic radius.  All of the models described are 
homogeneous earth models.  Five different earth materials were tested: salt, basalt, 
strong granite, weak granite, and quartz.  Salt, basalt, strong granite, and quartz 
material models for CTH used standard materials from the SESAME tables (Kerley 
and Christian-Frear, 1993) with material seslan numbers 7282, 7530, 7390, and 7386, 
respectively.  The weak granite model (granite2 in captions) was developed by Eric 
Chael (personal communication) upon altering seslan 7390 to better match data 
collected during the Source Physics Experiment (Snelson et al., 2013).

Two-dimensional, cylindrical symmetry CTH simulations were performed in each of 
the five materials.  In order to investigate the elastic radius, tracers were placed from 
roughly 2 m to 15 m from the source in the vertical and radial dimension (Figure 6), 
with a spacing of 14 cm to match the desired FD grid node spacing.  A fully tamped 10 
kg TNT explosive charge was detonated in the material on the symmetry axis.  Figure 
6 also shows the expansion of the initial shock wave as computed by CTH.  All tracers 
were low-pass filtered to 2000 Hz before input into axiElasti.

4.2. Determination of Ambient Wave Speed
Following an explosion detonation, a shock wave propagates from the source with a 
speed faster than the speed of sound in that material.  As the amplitude of the shock 
wave decreases as it moves farther from the source, the wave speed of the shock 
decreases and approaches the ambient wave speed of the material.  It is this ambient 
wave speed that the linear seismic wave propagation code uses as one of its material 
parameters.

Although some of the SESAME tables provide approximate ambient wave speeds, 
several do not and many that do contain warnings that the material models do not 
approach that provided wave speed in the ambient limit (Kerley and Christian-Frear, 
1993).  Because of this, we need to determine the appropriate ambient wave speed 
from the CTH tracer data itself.  Travel times and true source-tracer distances 
( � ) were computed for each pressure tracer.  An example of an unprocessed 
CTH pressure tracer line along the z=0 axis (Figure 7) shows the moveout and change 
of shape of the pressure pulses as a function of distance.  Travel times were 
automatically picked by finding the first time where amplitudes exceed 1% of the peak 
amplitude of the trace.  A simple 1-D model of wave speed as a function of distance 
from the source was constructed by solving a linear inverse problem.  Travel time ( � ) 
and wave speed ( � )are related by

� (4.1)

r2
tr + z2

tr

ta
v

ta = ∫
d

0

dl
v(l )

= ∫
d

0
s(l )dl
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Figure 6: Outgoing shock wave at 1 ms (top) and 4 ms (bottom).  The right half 
of each figure shows the magnitude of the radial velocity (outward motion 
colored; inward motion grayscale); the left half of each shows pressure 
(compression in color; tension in grayscale).  Also shown are example tracer 
points (black squares).  For illustrative purposes we do not show the full set.



where �  is the slowness (inverse of velocity).  The rightmost equation in (4.1) is linear 
in slowness as long as the path traveled remains constant, which we are assuming in 
this simple analysis.  This can be discretized into

� (4.2)

where �  is the slowness in cell �  and �  is the length of the cell.  This can be 
reformulated into a linear system

� (4.3)

where �  is a matrix with number of rows equal to the number of tracers and number 
of columns equal to the number of cells.  It contains entries equal to �  at the 
appropriate locations.  This would be sufficient with noise-free data, but numerical 
noise in the tracer output produced poor results when used alone.  Thus, the system 
was regularized by imposing a smoothness constrain.  The 1-D slowness model is 
constrained to be smooth in the Laplacian sense by augmenting the system of 
equations in (4.3) with

s

ta ≈ ∑ siΔli

si i Δli

As = ta

A
Δli
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Figure 7:  CTH pressure tracers along the z=0 axis from 2 m to 10 m from the 
source in quartz.



� (4.4)

for every cell � .  The system of equations then becomes

� (4.5)

where �  contains the Laplacian smoothing coefficients.  One can then solve for the 
slownesses in each cell.  The results for each material is shown in Figure 8.  Table 1 
gives the ambient wave speed (Vp) determined for each material.  The shear wave 
velocities (Vs) were computed by using the standard poisson ratio of 0.25 and 
densities were provided in the SESAME tables.

4.3. Elastic Radius and Effect of Coupling Distance
We desire to see how the distance at which the two codes are coupled affect 
waveforms and amplitudes.  With our tracer geometry, we can choose where we 
couple CTH to the linear elastic code anywhere from 2 m to 15 m from the source.  To 
see the effects on the far-field waveforms on our choice of the coupling distance, we 

Li = − si−1 + 2si − si+1

i

[A
L] s = [ta

0]
L
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Figure 8:  Computed shock wave propagation speed as a function of distance 
from the source in the five materials.  Granite 2 is the weak granite model.



try coupling distances of 2.1 m, 2.5 m, 3.1 m, 4.0 m, 4.5 m, 5.0 m, 6.0 m, 8.0 m, and 
10.0 m from the source for all five materials.  For quartz and the strong granite we also 
tried 12 m and 15 m.  For weak granite, salt, and basalt the pressure waveforms are all 
shown at 10 m from the source, output from the linear elastic code, axiElasti after 
using time-varying boundary conditions at the locations given above (Figures 9-11).  
For quartz and strong granite we show the linear elastic pressure traces at 15 m 
(Figures 12-13).  Legends in these figures are labeled according to coupling distances 
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Material Vp (m/s) Vs (m/s)

Salt 4620 2667 2145

Basalt 7030 4059 2868

Strong Granite 5150 2973 2551

Weak Granite 3450 1992 2551

Quartz 5683 3281 2205

 (kg/m3)ρ

Table 1. Ambient Wave Speeds

Figure 9:  Effect of axiElasti pressure waveforms at 10 m using 
different coupling distances (legend) in the weak granite model.
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Figure 11:  Effect of axiElasti pressure waveforms at 10 m using different 
coupling distances (legend) in the basalt model.

Figure 10:  Effect of axiElasti pressure waveforms at 10 m using 
different coupling distances (legend) in the salt model.
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Figure 13:  Effect of axiElasti pressure waveforms at 15 m using 
different coupling distances (legend) in the strong granite model.

Figure 12:  Effect of axiElasti pressure waveforms at 15 m using 
different coupling distances (legend) in the quartz model.
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Figure 15:  Cross-correlation coefficients of axiElasti pressure waveforms 
as a function of coupling distance relative to farthest waveform.

Figure 14:  Peak amplitude ratios of axiElasti pressure waveforms 
as a function of coupling distance relative to farthest waveform.



(location of time-varying boundary condition interface).  Output from the linear elastic 
code at farther observational distances shows similar behavior to those shown.

We would expect the far-field waveforms to remain constant if we choose a coupling 
distance beyond the elastic radius.  Depending on the desired criteria, one can obtain 
different estimates of the elastic radius.  We show the peak amplitude ratios of the 
waveforms and cross-correlation coefficients (Figures 14-15) versus coupling 
distances relative to the waveform from the farthest coupling distance.  From this, if 
we choose 1% maximum error as the criteria, we obtain the estimates of the elastic 
radius given in Table 2 for both the case where the estimate is based on maximum 
amplitude or cross-correlation coefficient. 

4.4. Discussion
The choice of the coupling distance does greatly affect the waveform shape and peak 
amplitudes of the far-field waveforms.  As expected, once the wavefield is beyond the 
elastic radius, the far-field waveforms remain nearly constant.  However, within the 
nonlinear region, the waveforms and amplitudes asymptotically approach the elastic 
region waveforms as distance increases.  The elastic radius depends strongly on the 
material and also on the method used to compute the elastic radius.  Waveform shapes 
approach the elastic waveforms at closer coupling distances than peak amplitudes.  
Weaker materials (weak granite and salt) have a greater difference in elastic radii 
computed via peak amplitude and cross-correlation.

The observation that the waveform shape approaches the linear waveform shape at 
closer distances than amplitudes suggests that one could couple the codes at the elastic 
radius determined by cross-correlation and then appropriately scale the waveforms to 
correct for the amplitude mismatch.  This approach could save significant 
computational effort in certain simulation scenarios since CTH calculations require 
substantially more computational resources than linear elastic wave propagation 
codes.  This would be especially relevant for 3-D scenarios where the difference in 
computational cost between the algorithms is even greater.  However, this will require 
further research into what the appropriate amplitude scaling constant is for different 
models and simulation scenarios.  For example, these simulations were computed for a 
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Material Peak Amp Xcorr

Salt 5 m 2 m

Basalt 6 m 5 m

Strong Granite 10 m 8 m

Weak Granite 8 m 3.5 m

Quartz 12 m 10 m

Table 2. Estimated elastic radii based on 1% error in 
peak amplitude and cross-correlation coefficient



10 kg TNT explosion; however, does the scaling constant depend on yield?  There 
may be other factors that need investigated to determine how they many affect the 
scaling constants.

Figures 9-13 demonstrate the strong effect of nonlinearities on the waveform shape 
and how that shape evolves as the shock wave propagates.  Further research is needed 
to understand how the source itself (e.g., yield), heterogeneity near the source, and 3-
D effects, among others, effect the evolution of the waveforms toward those that 
propagate to the far-field where seismic receivers are typically located.
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5. CONCLUSIONS AND FUTURE WORK
In this report we have described the development of a 2-D axisymmetric, cylindrical 
coordinate system algorithm for simulation of linear elastic wave propagation called 
axiElasti.  This algorithm has the additional ability to couple to the nonlinear, shock 
propagation code CTH through time-varying boundary conditions.  This allows end-
to-end simulation of an explosion, for example, accounting for the complex nonlinear 
effects near the source while then switching to a more computationally efficient and 
accurate linear wave propagation solver in the far-field, linear regime.  One obtains the 
benefits of both algorithm types within the respective regimes for which they were 
designed, enabling a more complete understanding of the physical processes that 
affect the evolution of the wavefield from the near-field to far-field.

One important factor in how the wavefield evolves is the elastic radius.  In this report 
we performed numerical experiments with simple homogenous earth materials using 
the code coupling developed as part of this project.  We investigated the location of the 
elastic radius and how choice of the coupling location between the two algorithms 
affects waveforms observed in the far-field.  The location of the elastic radius is 
strongly dependent on the material type.  It also depends on how one defines it.  We 
tested two methods of determining the elastic radius: peak amplitude ratios and cross-
correlation coefficient relative to a far-field waveform as a function of code coupling 
distance.  For all materials tested, the cross-correlation coefficient estimates a smaller 
elastic radius compared to radii based on peak amplitude ratios, indicating that 
waveform shape more rapidly approaches the linear one with distance compared to 
amplitude.  Secondly, weaker materials have a greater difference in elastic radii 
computed with the two methods.

This report barely scratches the surface on the utility of coupled codes and there 
remain many questions that can be addressed with these algorithms.  For example, we 
noticed that waveform shape approaches the linear regime waveforms quicker than 
amplitude.  This suggests computational resources could be saved provided the correct 
scaling factor could be applied.  However, what factors influence this scaling 
relationship and when can or cannot it be used?  In addition to this specific question, 
more general questions remain, such as how the source itself, local earth structure, 3-D 
effects, topography, etc., influence the evolution of the wavefield from the extreme 
near-field to typical seismological observation distances in the far-field.  These and 
many other questions can be addressed with this code.  Future plans include extending 
the code coupling principles outlined in this report to the existing 3-D linear elastic 
wave propagation code, Parelasti.  This enhancement will enable more complex and 
geologically realistic simulations and investigations with end-to-end modeling.
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